SpM Handbook 1.2.4
Loading...
Searching...
No Matches
Spm_dev_norm

Norm computation routines. More...

Files

file  c_spm_norm.c
 
file  s_spm_norm.c
 
file  z_spm_norm.c
 
file  d_spm_norm.c
 

Functions

float s_spmNorm (spm_normtype_t ntype, const spmatrix_t *spm)
 Compute the norm of an spm matrix.
 
float s_spmNormMat (spm_normtype_t ntype, const spmatrix_t *spm, spm_int_t n, const float *A, spm_int_t lda)
 Compute the norm of a dense matrix that follows the distribution of an spm matrix.
 
double d_spmNorm (spm_normtype_t ntype, const spmatrix_t *spm)
 Compute the norm of an spm matrix.
 
double d_spmNormMat (spm_normtype_t ntype, const spmatrix_t *spm, spm_int_t n, const double *A, spm_int_t lda)
 Compute the norm of a dense matrix that follows the distribution of an spm matrix.
 
float c_spmNorm (spm_normtype_t ntype, const spmatrix_t *spm)
 Compute the norm of an spm matrix.
 
float c_spmNormMat (spm_normtype_t ntype, const spmatrix_t *spm, spm_int_t n, const spm_complex32_t *A, spm_int_t lda)
 Compute the norm of a dense matrix that follows the distribution of an spm matrix.
 
double z_spmNorm (spm_normtype_t ntype, const spmatrix_t *spm)
 Compute the norm of an spm matrix.
 
double z_spmNormMat (spm_normtype_t ntype, const spmatrix_t *spm, spm_int_t n, const spm_complex64_t *A, spm_int_t lda)
 Compute the norm of a dense matrix that follows the distribution of an spm matrix.
 

Detailed Description

Norm computation routines.

Function Documentation

◆ s_spmNorm()

float s_spmNorm ( spm_normtype_t  ntype,
const spmatrix_t spm 
)

Compute the norm of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1214 of file s_spm_norm.c.

References s_spmFrobeniusNorm(), s_spmMaxNorm(), s_spmOneInfNorm(), SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by s_spmGenRHS(), and spmNorm().

◆ s_spmNormMat()

float s_spmNormMat ( spm_normtype_t  ntype,
const spmatrix_t spm,
spm_int_t  n,
const float *  A,
spm_int_t  lda 
)

Compute the norm of a dense matrix that follows the distribution of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
[in]nThe number of columns of the matrix A.
[in]AThe matrix A of size lda-by-n.
[in]ldaThe leading dimension of the matrix A. Must be >= max(1, spm->nexp).
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1278 of file s_spm_norm.c.

References spmatrix_s::clustnbr, spmatrix_s::comm, LAPACKE_slassq_work, spmatrix_s::nexp, spmatrix_s::replicated, SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by s_spmCheckAxb(), spmNormMat(), and spmNormVec().

◆ d_spmNorm()

double d_spmNorm ( spm_normtype_t  ntype,
const spmatrix_t spm 
)

Compute the norm of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1214 of file d_spm_norm.c.

References d_spmFrobeniusNorm(), d_spmMaxNorm(), d_spmOneInfNorm(), SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by d_spmGenRHS(), and spmNorm().

◆ d_spmNormMat()

double d_spmNormMat ( spm_normtype_t  ntype,
const spmatrix_t spm,
spm_int_t  n,
const double *  A,
spm_int_t  lda 
)

Compute the norm of a dense matrix that follows the distribution of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
[in]nThe number of columns of the matrix A.
[in]AThe matrix A of size lda-by-n.
[in]ldaThe leading dimension of the matrix A. Must be >= max(1, spm->nexp).
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1278 of file d_spm_norm.c.

References spmatrix_s::clustnbr, spmatrix_s::comm, LAPACKE_dlassq_work, spmatrix_s::nexp, spmatrix_s::replicated, SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by d_spmCheckAxb(), spmNormMat(), and spmNormVec().

◆ c_spmNorm()

float c_spmNorm ( spm_normtype_t  ntype,
const spmatrix_t spm 
)

Compute the norm of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1214 of file c_spm_norm.c.

References c_spmFrobeniusNorm(), c_spmMaxNorm(), c_spmOneInfNorm(), SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by c_spmGenRHS(), and spmNorm().

◆ c_spmNormMat()

float c_spmNormMat ( spm_normtype_t  ntype,
const spmatrix_t spm,
spm_int_t  n,
const spm_complex32_t A,
spm_int_t  lda 
)

Compute the norm of a dense matrix that follows the distribution of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
[in]nThe number of columns of the matrix A.
[in]AThe matrix A of size lda-by-n.
[in]ldaThe leading dimension of the matrix A. Must be >= max(1, spm->nexp).
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1278 of file c_spm_norm.c.

References spmatrix_s::clustnbr, spmatrix_s::comm, LAPACKE_classq_work, spmatrix_s::nexp, spmatrix_s::replicated, SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by c_spmCheckAxb(), spmNormMat(), and spmNormVec().

◆ z_spmNorm()

double z_spmNorm ( spm_normtype_t  ntype,
const spmatrix_t spm 
)

Compute the norm of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1214 of file z_spm_norm.c.

References SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, SpmOneNorm, z_spmFrobeniusNorm(), z_spmMaxNorm(), and z_spmOneInfNorm().

Referenced by spmNorm(), and z_spmGenRHS().

◆ z_spmNormMat()

double z_spmNormMat ( spm_normtype_t  ntype,
const spmatrix_t spm,
spm_int_t  n,
const spm_complex64_t *  A,
spm_int_t  lda 
)

Compute the norm of a dense matrix that follows the distribution of an spm matrix.

Parameters
[in]ntype= SpmMaxNorm: Max norm = SpmOneNorm: One norm = SpmInfNorm: Infinity norm = SpmFrobeniusNorm: Frobenius norm
[in]spmThe spm structure describing the matrix.
[in]nThe number of columns of the matrix A.
[in]AThe matrix A of size lda-by-n.
[in]ldaThe leading dimension of the matrix A. Must be >= max(1, spm->nexp).
Returns
The norm of the spm matrix -1 when error occurs or with pattern only

Definition at line 1278 of file z_spm_norm.c.

References spmatrix_s::clustnbr, spmatrix_s::comm, LAPACKE_zlassq_work, spmatrix_s::nexp, spmatrix_s::replicated, SpmFrobeniusNorm, SpmInfNorm, SpmMaxNorm, and SpmOneNorm.

Referenced by spmNormMat(), spmNormVec(), and z_spmCheckAxb().